Counting feasible solutions of the traveling salesman problem with pickups and deliveries is #P-complete

Gerardo Berbeglia a,*, Geña Hahn b

a Canada Research Chair in Distribution Management, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal, H3T 2A7, Canada
b Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, succursale Centre-ville, Montreal, H3C 3J7, Canada

\begin{abstract}
Deciding whether or not a feasible solution to the Traveling Salesman Problem with Pickups and Deliveries (TSPPD) exists is polynomially solvable. We prove that counting the number of feasible solutions of the TSPPD is hard by showing that the problem is #P-complete.
\end{abstract}

1. Introduction

The problem of computing the number of solutions of certain problems has been studied in various areas such as combinatorics, artificial intelligence, statistical physics, operations research and constraint programming. In a constraint programming context, the number of solutions of a specific subproblem, or a relaxation of the problem, can be used for developing branching strategies \cite{11}. Several authors counted feasible solutions in vehicle routing problems, for example \cite{3,12,5}. Healy and Moll \cite{5} presented an application of counting feasible solutions for solving the Dial-a-Ride Problem. Their technique consists of a local search method with a secondary metric. The additional metric is the number of feasible solutions neighbour to the current solution.

The performance of exact and heuristic algorithms for vehicle routing problem sometimes depends on the number of feasible solutions of the specific instance to solve. For illustration, consider the following three examples. Bourgeois et al. \cite{2} developed three heuristics for solving the Black and White Traveling Salesman Problem and observed that one of the heuristics was able to find a feasible solution more frequently than the other two on tightly constrained instances. The other two heuristics, however, tended to produce better solutions than the first one when a feasible solution could be found. Aminu and Eglese \cite{1} developed an exact constraint programming algorithm for the Chinese Postman Problem with Time Windows. They concluded that the constraint programming approach works much better on instances with relatively small number of feasible solutions. Mak and Boland \cite{8} solved the Asymmetric Traveling Salesman Problem with Replenishment Arcs with an integer linear programming software using a polynomial size formulation and they compared the results with those obtained by column generation. They observed that their method is very efficient for problems with a large number of feasible solutions. These are hard for column generation because they contain too many columns. These three examples
suggest that advance knowledge, or at least an estimate, of the number of feasible solutions of a given instance of a vehicle routing problem can be used to determine which method is likely to perform best for solving the problem. In this article we prove that for the Traveling Salesman Problem with Pickups and Deliveries (TSPPD) a method for counting efficiently the exact number of solutions is unlikely to exist. More precisely, we prove that this problem is complete for \#P, a class of counting problems introduced by Valiant [14] in the late 1970’s. Consequently, heuristic methods or approximation algorithms for counting the number of solutions of the TSPPD can be useful.

Along the way to a proof of \#P-completeness of the TSPPD, we define a simple permutation problem (\#PP) and prove that it is \#P-complete. Both these results should be useful for proving that other counting problems are hard, specially those related to scheduling. An important ingredient in our proof that \#PP is \#P-hard is an interpolation which resembles Valiant’s technique [15]. The combinatorial matrix used in our polynomial interpolation, however, is not the Vandermonde matrix used by Valiant.

The remainder of the article is organized as follows. In Section 2 we define the TSPPD and the counting complexity classes \#P and \#P-complete. In Section 3 we prove some basic properties that will be used for proving our main results, including the \#P-completeness of the counting version of the Subset Sum Problem. The main results are proven in Section 4. We close with open questions in Section 5.

2. Definitions

Let \(G = (V, A) \) be a complete (that is, \((u, v) \in A \text{ and } (v, u) \in A \text{ for all } u \neq v \in V \)) directed graph with vertex set \(V = \{0, \ldots, n\} = \{0\} \cup \{n\} \) (with \([n] = \{1, 2, \ldots, n\}\) to simplify notation later). Vertex 0 represents the depot and the remaining vertices represent customers. Two non-negative integers, \(d_i \) and \(p_i \), are associated with each customer \(i \). The quantity \(d_i \) represents the number of units that need to be delivered from the depot to customer \(i \), and the quantity \(p_i \) represents the number of units that must be brought from customer \(i \) back to the depot. Each arc \((i, j)\) has a non-negative length, or cost, \(c_{ij} \). A vehicle of capacity \(q \) is located at the depot and must be used to supply and collect the required number of units from customers. A feasible solution of the Traveling Salesman Problem with Pickups and Deliveries (TSPPD) is a simple directed cycle \(P = (0, a_1, \ldots, a_n) \) in \(G \) such that \((a_1, \ldots, a_n)\) is a permutation of \([n]\) (the set of customers) and the vehicle load never exceeds \(q \) along the cycle, i.e. \(\sum_{k=1}^{n} d_k + \sum_{j=1}^{n} (p_j - d_j) \leq q \) for all \(i \in [n] \). The cost of a feasible solution \(P = (0, a_1, \ldots, a_n) \) is equal to the sum of the costs of the edges of the cycle, i.e. \(c_{0,a_1} + \sum_{i=1}^{n-1} c_{a_i,a_{i+1}} + c_{a_n,0} \). The TSPPD consists of determining a feasible solution in \(G \) with minimum cost. We denote by \#TSPPD the problem of counting all feasible solutions of a given TSPPD instance.

Let \(Q_0 = \sum_{i=1}^{n} d_i \) and \(Q_0 = \sum_{i=1}^{n} p_i \) denote the total number of delivery and pickup units respectively. Let \(\delta_i = p_i - d_i \) be the difference between the vehicle load after and before visiting customer \(i \). Determining whether a TSPPD instance has a feasible solution is polynomial time solvable. One just has to check whether \(q \geq \max \{Q_0, Q_0\} \). If yes, there is at least one feasible cycle consisting of visiting the customers in increasing order of \(\delta_i \). If not, no solution exists since the vehicle leaves the depot with load \(Q_0 \) and returns to it with load \(Q_0 \). This is a corollary of a stronger result proved by Mosheiov [9].

We need to introduce some terminology and notation. Let \(S_n \) be the symmetric group on \([n]\). We say that a permutation \(\hat{\sigma} \in S_n \) is \((k > 0) k\)-extends a permutation \(\sigma \in S_n \) if for all \(i, j \in [n] \), \(\hat{\sigma}(i) \leq \hat{\sigma}(j) \) whenever \(\sigma(i) \leq \sigma(j) \). We call \(\hat{\sigma} \) a \(k\)-extension of \(\sigma \). The number of \(\hat{\sigma} \in S_{n+k} \) that \(k\)-extends a permutation \(\sigma \in S_n \) can be calculated as follows. Consider \(n \) objects ordered along a line. The number of ways of inserting additional \(k \) objects in the line, but without changing the relative positions of the original \(n \) objects, is \(\binom{n+k}{k} \) and this is exactly the number of \(k\)-extensions.

The complexity classes \#P and \#P [10] can be defined by the introduction of an NP-relation on the class of decidable problems, perhaps best thought of as languages over the alphabet \([0, 1]\) so that we have a precise notion of the length (size) of the input string (problem instance) \(x \). We give here a definition adapted from Trevisan [13]. A relation \(R \) is an NP-relation, if there is a polynomial time decision algorithm \(A \) such that \((x, y) \in R \iff A(x, y) = 1 \) and there is a polynomial \(p \) such that \((x, y) \in R \Rightarrow \|y\| \leq p(\|x\|) \) (think of a problem instance \(x \) and its polynomially verifiable solution \(y \); see below). Given a relation \(R \), we denote by \#R the problem of counting for how many \(y \), for a given \(x \), is \((x, y) \in R \). The class \#P is the class of problems of the form \#R where \(R \) is a NP-relation. Any NP-relation \(R \) defines a language \(L_R = \{x : \exists y \in R(x, y) \in R\} \). A language \(L \) belongs to the class \#P if there is an NP-relation \(R \) such that \(L = \#R \). Thus, for any NP language \(L_R \), if \(R \) is \#P, then \(L \) can be seen as a “witness” of the membership of \(x \) in \(L \). Given an NP-relation \(R \), the problem \#R can be seen as the problem of counting the number of witnesses for a given input of an NP problem. Given two relations \(A \) and \(B \), the problem \#A is said to be polynomially Turing reducible to the problem \#B written \#A \(\leq^P \) \#B if there is a polynomial time algorithm for \#A, given an oracle for \#B. A problem \#C is hard for the class \#P if \#A \(\leq^P \) \#C for every problem \#A \(\in \#P \). A problem is \#P-complete if it is hard for the class \#P and it belongs to \#P. See [7] for more.

3. Tools

In this section we define the matrix \(A(n) \) and we prove that it is invertible. This property is needed later in our polynomial interpolation. At the end of this section, we prove that the counting version of the well known Subset Sum Problem is \#P-complete. This fact, which we will use for proving the hardness of the TSPPD, is well known; curiously, no proof appears to be available in the literature which is the reason for providing it here (Theorem 4).
Lemma 1. Let $n \geq 2$, $n \in \mathbb{N}$ and $j \in \mathbb{N}$, $1 \leq j \leq n$. Then,

$$
\sum_{i=0}^{n-1} (-1)^{n+i-1} \binom{n-1}{i-1} \binom{n+i-j}{i} = \begin{cases}
\binom{2n-j}{n} & \text{if } j > 1 \\
\binom{2n-1}{n} - 1 & \text{if } j = 1.
\end{cases}
$$

Proof. Assume n is even. Then

$$
\sum_{i=1}^{n-1} (-1)^{n+i-1} \binom{n-1}{i-1} \binom{n+i-j}{i} = \sum_{i=1}^{n-1} (-1)^{i-1} \binom{n-1}{i-1} \binom{n+i-j}{n-j} - (-1)^{n-1} \binom{2n-j}{n} = -\binom{n-j+1}{1-j} + \binom{2n-j}{n}.
$$

The equivalence $\sum_{i=1}^{n} (-1)^{i-1} \binom{n-1}{i-1} \binom{n+i-j}{i} = -\binom{n-j+1}{1-j}$ used between Eqs. (1) and (2) is a special case of a binomial identity proved in Graham et al. [4] (identity 5.24, page 169). The case where n is odd can be proved analogously, mutatis mutandis. \square

Definition 2. Assume $n \geq 2$. Let $A(n)$ be the matrix defined as

$$A(n)_i = \binom{n+i-j}{i} \text{ for } i, j \in [n].$$

(3)

Lemma 3. The matrix $A(n)$ has full rank.

Proof. We proceed by induction in n.

If $n = 2$, the matrix

$$A(2) = \begin{pmatrix}
\binom{2}{1} & \binom{1}{1} \\
\binom{1}{3} & \binom{1}{2} \\
\binom{2}{2} & \binom{2}{1}
\end{pmatrix} = \begin{pmatrix}
2 & 1 \\
3 & 1
\end{pmatrix}
$$

has full rank.

Assume that $A(n-1)$ has full rank for $n > 2$. We first show that the $(n-1) \times (n-1)$ upper right submatrix of $A(n)$ is equal to $A(n-1)$. This is proved by following the definition of $A(n)$: $A(n)_{i(j+1)} = \binom{n+i-j-1}{i} = \binom{n-1+i-j}{i} = A(n-1)_{ij}$ for $i, j \in [n-1]$. Therefore, by the induction hypothesis, we can assume that the first $n-1$ rows of $A(n)$ are linearly independent. Let us denote the i-th row vector of $A(n)$ by $w^i = (w^i_1, \ldots, w^i_n), i = 1, \ldots, n$. We prove that w^n cannot be written as a linear combination of w^1, \ldots, w^{n-1}. We proceed by contradiction. Assume there are real numbers $\alpha_1, \ldots, \alpha_{n-1}$ such that

$$w^n_j = \sum_{i=1}^{n-1} \alpha_i w^i j \text{ for } j = 1, \ldots, n. \quad \text{(4)}$$

Let ψ^i be the i-th row vector of $A(n-1)$. Using the fact that the $(n-1) \times (n-1)$ upper right submatrix of $A(n)$ is equal to $A(n-1)$, we have that for all $i \in [n-1]$ and $j \in [2, \ldots, n]$, $w^i_j = \psi^i_{j-1}$. Thus, (4) is equivalent to (5) and (6):

$$w^n_1 = \sum_{i=1}^{n-1} \alpha_i w^i_1 \quad \text{(5)}$$

$$w^n_j = \sum_{i=1}^{n-1} \alpha_i \psi^i_{j-1} \text{ for } j = 2, \ldots, n. \quad \text{(6)}$$
By the induction hypothesis, the set \(\{ \varphi_1, \ldots, \varphi_{n-1} \} \) is a basis of the vector space \(\mathbb{R}^{n-1} \) and so the real numbers \(\alpha_1, \ldots, \alpha_{n-1} \) satisfying (6) are unique (see, e.g., Hoffman and Kunze [6]). Applying the definition of the vectors \(w \) and \(\varphi \) and the definition of the matrix \(A(n) \), Eqs. (5) and (6) can be written as follows:

\[
\begin{align*}
\binom{2n-1}{n} &= \sum_{i=1}^{n-1} \alpha_i \binom{n+i-1}{i} \\
\binom{2n-j}{n} &= \sum_{i=1}^{n-1} \alpha_i \binom{n+i-j}{i} \quad (j = 2, \ldots, n).
\end{align*}
\]

(7)

(8)

If we let \(\alpha_i = (-1)^{n+i-1} \binom{n-1}{i-1} \), Eq. (8) is satisfied, by Lemma 1. However, Eq. (7) is not since

\[
\sum_{i=1}^{n-1} (-1)^{n+i-1} \binom{n-1}{i-1} \left(\binom{n+i-1}{i} - \binom{2n-1}{n} \right) = 0.
\]

This proves that the unique numbers \(\alpha_1, \ldots, \alpha_{n-1} \) satisfying (6) do not satisfy (7) and thus the assumption that the last row vector of \(A(n) \) i.e., \(w_n \), is a linear combination of the first \(n - 1 \) row vectors of \(A(n) \) leads to a contradiction. Therefore, \(A(n) \) has full rank. \(\Box \)

We now define the counting version of the Subset Sum Problem and we prove that it is \#P-complete by providing a polynomial reduction from \#3-SAT which is parsimonious, i.e., it preserves the number of solutions. Our proof is based on known techniques for reducing the 3-SAT to the Subset Sum Problem.

Name: \#Subset Sum Problem (\#SSP).

Input: \((B, s, \pi)\), where \(B \) is a finite set, \(\pi : B \to \mathbb{N} \) is a function and \(s \in \mathbb{N} \).

Output: The number of subsets \(T \subseteq B \) such that \(\sum_{i \in T} \pi(i) = s \).

Theorem 4. The \#Subset Sum Problem is \#P-complete.

Proof. It is well known that \#3-SAT is \#P-complete, see, for example, [14]. Since there exists a polynomial-time non-deterministic Turing machine that first chooses a subset \(T \subseteq B \) and then accepts it only when \(\sum_{i \in T} \pi(i) = s \), \#SSP is in \#P. We now describe a parsimonious polynomial reduction from \#3-SAT to \#SSP.

Let \(\phi \) be an instance of \#3-SAT, that is, a sentence in conjunctive normal form in which no clause has more than three terms. Let \(X = \{ x_i : i \in [n] \} \) be the set of variables that occur in \(\phi \) and let \(C = \{ c_j : j \in [m] \} \) be the set of clauses. For each variable \(x_i \) let \(\hat{x}_0, \hat{x}_1 \) be the corresponding literals, that is, \(\neg x_i \) and \(x_i \), respectively. Recall that the Kronecker delta is (for our purposes) a function \(\delta : \mathbb{N} \times \mathbb{N} \to \{0, 1\} \) defined by \(\delta(i, j) = 1 \) if and only if \(i = j \). Define \(\rho : [n] \times [m] \times \{0, 1\} \to \{0, 1\} \) by \(\rho(i, j, \ell) = 1 \) if and only if the literal \(\hat{x}_\ell \) occurs in the clause \(c_j \).

For each literal \(\hat{x}_\ell \) define an integer \(v_{\hat{x}, k} \) of \(n + m \) decimal digits by setting the \(k \)-th digit \(v_{\hat{x}, k} = \delta(i, k) \) for \(k \in [n] \) and \(v_{\hat{x}, k} = \rho(i, k, \ell) \) for \(k \in [n+j] : j \in [m] \). For each clause \(c_j \) and \(j \in [m] \) define two new literals \(\hat{c}_{\ell, j} \) and \(\hat{c}_{\ell, j^2} \) and two integers \(c_{\ell, j} \) of \(n + m \) decimal digits with \(\ell = 1, 2 \) by \(c_{\ell, j}^{(1)} = \ell \) and \(c_{\ell, j}^{(2)} = 0 \) otherwise. Let \(B = \{ \hat{x}_0, \hat{x}_1 \} : i \in [n] \} \), \(\ell \in \{ 1, 0 \} \} \) \cup \{ c_{\ell, j} : i \in [m], \ell \in \{ 1, 2 \} \} \}. For \(y \in B \) let \(\pi(y) \) (also written \(\pi_y \)) be the corresponding integer. That is, if \(y = \hat{x}_i \), \(\pi(y) = v_{\hat{x}, i} \) and if \(y = c_{\ell, j} \) then \(\pi(y) = c_{\ell, j} \). Let \(s_1 = s_1 \ldots s_{n+1} \ldots s_{n+m} \) be the \(n + m \)-digit integer with \(s_i = 1 \) for \(i \in [n] \) and \(s_{n+i} = 4 \) for \(j \in [m] \).

Observe first that for any \(S \subseteq B \), we have \(\sum_{y \in S} \pi_y \leq 6 \) for \(k \in [n + j] : j \in [m] \) while \(\sum_{y \in S} \pi_y \leq k \) for \(k \in [n] \).

Thus \(\sum_{y \in S} \pi_y \) can be obtained digit by digit. Let \(\tau : X \to \{0, 1\} \) be a truth assignment with 0 indicating that the variable is false, 1 that it is true. This partitions \(X \) into \(X_0 \cup X_1 \) with \(X_\ell = \{ x \in X : \tau(x) = \ell \} \), \(\ell = 0, 1 \). Let \(|c| \) be the number of literals in \(c_j \) set to 1 by \(\tau \); this is a number in \(\{0, 1, 2, 3\} \) in general and in \(\{1, 2, 3\} \) if \(c_j \) is satisfied. Let \(S_\ell = \{ c_{\ell, j} : \ell \in [1, 2, 3], x_{c_{\ell, j}} \in X_\ell \} \cup |c| \} \) \cup \{ c_{\ell, j} : j \in [m], |\ell, c_{\ell, j} = 2} \cup \{ c_{\ell, j} : j \in [m], |\ell, c_{\ell, j} = 1} \} \}

It is easy to see that \(\sum_{y \in S} \pi_y = s \) when \(\tau \) satisfies \(\phi \). Indeed, exactly one of \(v_{\hat{x}, 0}, v_{\hat{x}, 1} \) is chosen by \(\tau \) whenever \(\tau \) satisfies \(\phi \), while the choice of the \(c_{\ell, j} \) guarantees that \(\sum_{y \in S_\ell} \pi_y = 4 \). It is equally easy to see that the mapping that sends \(\tau \) to \(S_\ell \) is injective and surjective for it is clear how to obtain a truth assignment from a set \(T \) summing up to \(s \) and why for different sets different truth assignments arise. Thus the transformation induces a bijection between the set of truth assignments satisfying \(\phi \) and subsets \(T \) of \(B \) whose values sum up to \(s \).

This proves that there is a polynomial-time reduction from \#3-SAT to \#SSP which is parsimonious. \(\Box \)

In the sequel, we will assume, without loss of generality, that in the \#SSP, \(B = [n] \) and that \(\pi(i) = a_i \) for \(i \in [n] \). Therefore, the input of the \#SSP can be thought to be \((S, m)\) where \(S \) is a vector \(S = (a_1, \ldots, a_n) \in \mathbb{N}^n \) and \(m \in \mathbb{N} \).

4. Main results

The most important ingredient in the \#P-completeness proof of the \#TSPPD, namely the \#P-completeness of the Permutation Problem defined below, is of independent interest. It requires some preparation and a few lemmas.
4.1. Hardness of the Permutation Problem

We define the Permutation Problem (\#PP) as follows.

Name: Permutation Problem (\#PP).

Input: \((S, m)\) with \(S = (a_1, \ldots, a_n) \in \mathbb{Z}^n, n \in \mathbb{N}, \) and \(m \in \mathbb{Z}_{\geq 0}.\)

Output: The number of permutations \(\sigma \in S_n\) such that \(\sum_{i=1}^{n} a_{\sigma(i)} \leq m\) for all \(i \in [n].\)

Given a sequence \(S = (a_1, \ldots, a_n)\) of integers and an integer \(m,\) a permutation \(\sigma \in S_n\) is said to be \((S, m)\)-valid (or, simply, valid) if \(\sum_{i=1}^{n} a_{\sigma(i)} \leq m\) for all \(i \in [n].\) Thus, the output of the \#PP when given an instance \(I = (S, m)\) is the number of \((S, m)\)-valid permutations.

We will prove that the \#P-complete problem \#SSP is polynomially Turing reducible to the \#PP. The idea is the following. Given an instance of the \#SSP, we first construct an instance \(I\) of the \#PP. Then we define a series of \#PP instances associated to \(I,\) each called a modified problem of \(I.\) We prove that solving each of the modified instances of \(I\) allows us to obtain an integer vector containing information about \(I,\) called the characteristic vector, and that the number of solutions to the original instance of \#SSP can be computed using this vector. We begin by defining the \(k\)-modified problem.

Given \(k \in \mathbb{N}\) and an instance \(I = (S, m)\) of the \#PP, we define an instance \(I_k,\) called the \(k\)-modified problem, as follows. If \(S = (a_1, \ldots, a_n),\) we multiply the number \(m\) and each of the elements in the sequence \(S\) by \(n + 2\) and we add \(k\) 1's to the original sequence. Thus, the modified instance \(I_k\) of \#PP is \((S', (n + 2)m)\) where \(S' = ((n + 2)a_1, (n + 2)a_2, \ldots, (n + 2)a_n, b_1, \ldots, b_k)\) and \(b_r = 1\) for \(r \in [k].\)

Let \(\sigma \in S_n\) be a permutation of \(S\) and assume \(k < n + 2.\) How many \((S', (n + 2)m)\)-valid permutations \(\hat{\sigma} \in S_{n+k}\) are \(k\)-extensions of a given \(\sigma \in S_n?\) If \(\sigma\) is not \((S, m)\)-valid, no valid extensions can be achieved. If \(\sum_{j=1}^{\ell} a_{\sigma(j)} < m,\) for all \(\ell \in [n],\) each \(b_r = 1, r \in [k],\) can be positioned anywhere. This is because \(\sum_{j=1}^{\ell} a_{\sigma(j)} + k \leq (n + 2)(m - 1) + k \leq (n + 2)m.\) This gives a total of \(\binom{n + k}{k}\) \(k\)-extensions. Finally, if, for some \(\ell \in [n],\) \(\sum_{j=1}^{\ell} a_{\sigma(j)} = m,\) let \(h = \max(\ell \in [n] : \sum_{j=1}^{\ell} a_{\sigma(j)} = m).\) In this case each \(b_r = 1, r \in [k]\) cannot be positioned before the \(h\)th position since then the sum would exceed \((n + 2)m,\) but they can be positioned any place after. This gives a total of \(\binom{n + k - h}{k}\) \(k\)-extensions. This relation between \(I\) and \(I_k\) gives rise to a series of linear equations shown in (9). Variables \(y_k\) represent the number of \((S', (n + 2)m)\)-valid permutations \(\hat{\sigma} \in S_{n+k},\)

\[y_k = \sum_{j=0}^{n} \binom{n + k - j}{k} k! x_j, \quad k = 1, \ldots, n + 1. \tag{9} \]

The above equation is trivially equivalent to

\[y_k = \sum_{j=1}^{n+1} \binom{n + 1 + k - j}{k} k! x_{j-1}, \quad k = 1, \ldots, n + 1 \tag{10} \]

which leads to the following lemma.

Lemma 5. The system of linear equations (9) is linearly independent.

Proof. Observe that the matrix associated with the system of linear equations (10) is equal to the product of the matrix \(A(n + 1)\) (see Definition 2) by a diagonal matrix whose diagonal values are non-zero. Thus, the linear independence of the system follows from Lemma 3 which proves that the matrix \(A(n + 1)\) has full rank.

For the next result we need a simple lemma.

Lemma 6. Let \(S = (a_1, \ldots, a_n) \in \mathbb{N}^n, n \in \mathbb{N}, \) and \(m \in \mathbb{N} \) and \(\rho \in S_{n+1}.\) Let also \(a_{n+1} = -1 - \sum_{i=1}^{n} a_i.\) Then there is at most one \(t \in [n + 1]\) such that \(\sum_{i=1}^{n} a_{\rho(i)} = m.\)

Proof. Suppose that there are \(s \in [n + 1] \) and \(t \in [n + 1] \) with \(s < t\) such that \(\sum_{i=1}^{t} a_{\rho(i)} = \sum_{i=1}^{s} a_{\rho(i)} = m.\) Then \(m = \sum_{i=1}^{s} a_{\rho(i)} + \sum_{i=s+1}^{t} a_{\rho(i)} = m + \sum_{i=s+1}^{t} a_{\rho(i)},\) that is, \(\sum_{i=s+1}^{t} a_{\rho(i)} = 0.\) But \(\sum_{i=s+1}^{t} a_{\rho(i)} < \sum_{i=1}^{n} a_{\rho(i)} = -1\) if \(a_{n+1} \in \{a_{\rho(s+1)}, \ldots, a_{\rho(t)}\}\) and \(\sum_{i=s+1}^{t} a_{\rho(i)} > 0\) otherwise, since \(a_i \in \mathbb{N}\) for \(i \in [n].\)

Lemma 7. Let \(I = (S, m), S = (a_1, \ldots, a_n),\) be an instance of \#SSP and set \(a_{n+1} = -1 - \sum_{i=1}^{n} a_i.\) Consider the instance of \#PP, \(I' = (S', m)\) with \(S' = (a_1, \ldots, a_n, a_{n+1}).\) Let \(x\) be the characteristic vector of \(I'.\) Then

\[\frac{n}{t_1! (n - t_1)!} \]

is the number of solutions of \(I.\)
Proof. We will construct a function ψ from the (S', m)-valid permutations to the subsets of $\{1, \ldots, n \}$. Let $\rho \in S_{n+1}$ be an (S', m)-valid permutation. If there is a $t \in [n+1]$ (unique by Lemma 6) such that $\sum_{j=1}^{t} a_{\rho(j)} = m$, set $\psi(\rho) = \{ \rho(j) : j \in [t]\}$.

Otherwise, i.e., if $\sum_{j=1}^{t} a_{\rho(j)} < m$ for all $t \in [n+1]$, we set $\psi(\rho) = \emptyset$.

To see that $\psi(\rho) \subseteq [n]$, it is sufficient to prove that $n + 1 \notin \psi(\rho)$. If $n + 1 \notin \psi(\rho)$, there exists $t \in [n]$ such that $\rho(t) = n + 1$ and thus $m = \sum_{j=1}^{t} a_{\rho(j)} = \sum_{j=1}^{t} a_{\rho(j)} + a_{n+1} \leq -1$ (since $a_{j} > 0$ for $j \in [n] < m$, which is absurd.

Denote by SSP_{t} the number of subsets $T \subseteq [n]$ with cardinality t such that $\sum_{j \in T} a_{j} = m$. Clearly, $\#\text{SSP}(I) = \sum_{t=1}^{n} \text{SSP}_{t}$.

Suppose $T \subseteq [n]$ has cardinality t and $\sum_{j \in T} a_{j} = m$. Any $\rho \in S_{n+1}$ such that $\psi(\rho) = T$ must satisfy the following conditions:

1. $\{ \rho(j) : j \in [t]\} = T$ (Note that $T \neq \emptyset$ since $m > 0$ and therefore $t > 0$);
2. $\rho(t+1) = n + 1$.

Indeed, if $\rho(t+1) \neq n + 1$, then $\sum_{j=1}^{t+1} a_{\rho(j)} = a_{\rho(t+1)} + \sum_{j=1}^{t} a_{\rho(j)} > m$ and so ρ is not an (S', m)-valid permutation. Observe that any permutation ρ satisfying these two conditions is (S', m)-valid since $\sum_{j=1}^{h} a_{\rho(j)} \leq m$ for any $h \in [n+1]$. Thus, $|\psi^{-1}(T)|$, that is, the number of (S', m)-valid permutations ρ such that $\psi(\rho) = T$, is equal to the number of ways of permuting the elements in T, times the number of ways of permuting the elements in $[n] \setminus T$. This is equal to $|T|!(n-|T|)! = t!(n-t)!$. Using the fact that x_{i} is the number of (S, m)-valid permutations $\sigma \in S_{n}$ such that $t = \max\{ \ell \in [n] : \sum_{j=1}^{\ell} a_{\sigma(j)} = m \}$, we can conclude that the number of solutions to $I = (S, m)$ is $\sum_{t=1}^{n} \text{SSP}_{t} = \sum_{t=1}^{n} x_{t}/(t!(n-t)!)$.

Theorem 8. $\#\text{PP}$ is $\#P$-complete.

Proof. The $\#\text{PP}$ clearly belongs to the class $\#P$, since a polynomial-time non-deterministic Turing machine M can choose a permutation $\rho \in S_{n}$ and accept it only when the permutation is valid. For completeness, let $I = (S, m), S = (a_{1}, \ldots, a_{n})$, be an instance of $\#\text{SSP}$. Construct an instance $I' = (S', m)$ of $\#\text{PP}$ as in the preceding lemma, that is, let $a_{n+1} = -1 - \sum_{i=1}^{n} a_{i}$ and let $S' = (a_{1}, \ldots, a_{n}, a_{n+1})$. Given an oracle for solving the permutation problem we can obtain the characteristic vector x for I' in polynomial time as follows. Using the oracle, we solve the k-modified problem of $I' \land + 1$ times, once for each k between 1 and $n + 1$. By Lemma 5, we compute the characteristic vector of I' by solving the system of linear equations (9).

Finally, by Lemma 7, we know that the number of solutions to $I = (S, m)$ is $\sum_{t=1}^{n} x_{t}/(t!(n-t)!)$.

The fact that this procedure can be performed in polynomial time proves that $\#\text{SSP} \leq_{T} \#\text{PP}$. □

4.2. Hardness of the #TSPPD

Using now the fact that the $\#\text{PP}$ is $\#P$-complete, we prove that the #TSPPD is $\#P$-complete. The #TSPPD can be defined in a compact way as follows.

Name: #TSPPD.

Input: (D, P, q) with $q \in N, D = (d_{1}, \ldots, d_{n}) \in Z_{\geq 0}^{n}, P = (p_{1}, \ldots, p_{n}) \in Z_{\geq 0}^{n}$ and $n \in N$.

Output: the number of permutations $\sigma \in S_{n}$ such that $\sum_{j=1}^{n} d_{j} + \sum_{j=1}^{n} (p_{\sigma(j)} - d_{\sigma(j)}) \leq q$ for all $i \in [n]$.

The sequences D and P represent the deliveries and pickup demands respectively and q represents the capacity of the vehicle. The property required for the permutations is satisfied only by the set of permutations that give a feasible cycle (i.e., the capacity constraint is respected). A permutation that represents a feasible cycle is said to be feasible.

Theorem 9. #TSPPD is #P-complete.

Proof. First note that #TSPPD belongs to the class #P. A polynomial-time non-deterministic Turing machine M can choose a permutation $\rho \in S_{n}$ and accept it if such permutation produces a feasible cycle. We will now prove that #TSPPD \leq_{T} #TSPPD.

Let (S, m) be an instance of #TSPPD with $S = (a_{1}, \ldots, a_{n})$. Let $H = -\sum_{i=1}^{n} a_{i}$. We define an instance $I = (P, D, q)$ of the #TSPPD with $D = (d_{1}, \ldots, d_{n})$ and $P = (p_{1}, \ldots, p_{n})$ by setting $d_{i} = -\min\{a_{i}, 0\}, p_{i} = \max\{a_{i}, 0\}$ for all $i \in [n]$, and $q = H + m$. Clearly, instance I can be constructed in polynomial time. See Fig. 1 for an example. Note first that the #TSP on the instance (S, m), counts the number of (S, m)-valid permutations $\sigma \in S_{n}$. On the other hand, the #TSPPD on the constructed instance $I = (P, D, q)$, counts the number feasible permutations, i.e., permutations $\sigma \in S_{n}$ such that $\sum_{j=1}^{n} d_{j} + \sum_{j=1}^{n} (p_{\sigma(j)} - d_{\sigma(j)}) \leq q$ for all $i \in [n]$.

A permutation $\sigma \in S_{n}$ is (S, m)-valid if for each $j \in [n]$, $\sum_{i=1}^{j} a_{\sigma(i)} \leq m$

$\Rightarrow H + \sum_{i=1}^{j} (\max\{a_{\sigma(i)}, 0\} + \min\{a_{\sigma(i)}, 0\}) \leq H + m$
Thus, a permutation \(\sigma \in S_n \) is \((S, m)\)-valid if and only if \(\sigma \) is feasible for the \#TSPPD instance \(I \). This shows there is a bijection between the set of \((S, m)\)-valid permutations and the set of feasible permutations in the \#TSPPD instance \(I \), proving the theorem. \(\square \)

5. Open questions

We leave two open questions related to the problem. Given that the \#TSPPD is \#P-complete, we can ask ourselves whether or not there exists a fully polynomial randomized approximation scheme for the problem. Another question is whether or not the \#TSPPD remains hard even if the input numbers (i.e., capacity of the vehicle, deliveries and pickups amounts) are written in unary notation.

Acknowledgements

We are grateful to Mark Jerrum for suggesting the modified problem as a way to prove the \#P-completeness of the \#TSPPD as well as other valuable comments. We also give thanks to Gilbert Laporte for reading the drafts and helping us improve the quality of this work. Thanks are also due to Leslie Valiant for quickly answering our technical query.

This work was partially supported by the Ministère de l’Éducation, du Loisir et du Sport du Québec and by a grant from the National Science and engineering research council of Canada (NSERC).

References